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Abstract

Abundant studies revealed that multi-walled carbon nanotubes (MWCNTs) are toxic to plants. However, whether or
how MWCNTs influence lateral root (LR) formation, which is an important component of the adaptability of the
root system to various environmental cues, remains controversial. In this report, we found that MWCNTs could
enter into tomato seedling roots. The administration with MWCNTs promoted tomato LR formation in an
approximately dose-dependent fashion. Endogenous nitric oxide (NO) production was triggered by MWCNTs,
confirmed by Greiss reagent method, electron paramagnetic resonance (EPR), and laser scanning confocal
microscopy (LSCM), together with the scavenger of NO. A cause-effect relationship exists between MWCNTs and
NO in the induction of LR development, since MWCNT-triggered NO synthesis and LR formation were obviously
blocked by the removal of endogenous NO with its scavenger. The activity of NO generating enzyme nitrate
reductase (NR) was increased in response to MWCNTs. Tungstate inhibition of NR not only impaired NO production,
but also abolished LR formation triggered by MWCNTs. The addition of NG-nitro-L-arginine methyl ester (L-NAME),
an inhibitor of mammalian nitric oxide synthase (NOS)-like enzyme, failed to influence LR formation. Collectively, we
proposed that NO might act as a downstream signaling molecule in MWCNT control of LR development, at least
partially via NR.
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Introduction
There have many biological and biomedical applications
of carbon nanotubes [1, 2]. Due to the unique ability to
easily penetrate cell membranes, the biosafety of carbon
nanotubes is always a debate topic [3, 4]. Meanwhile,
since the production and use of carbon nanotubes grow
rapidly, it becomes important to characterize the de-
tailed mechanisms of its cytotoxicity in human beings
and mammalians, and recently in plants [3–9]. It is well-
known that plants and their communities are very
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important for humans and environment, and they are at
risk of carbon nanotubes exposure either, due to buildup
in soils through biosolid fertilizer application [6, 10, 11].
As the important members of carbon nanotubes, the
toxicity of multi-walled carbon nanotubes (MWCNTs),
consisting of multiple rolled layers of graphene, has been
widely investigated. Studies in mammalian revealed that
the exposure with both MWCNTs and single-walled car-
bon nanotube induced oxidative damage and NF-κB ac-
tivation in human keratinocytes and A549 cells [9, 12].
MWCNTs and single-walled carbon nanotube can fuse
with the plasma membrane, thus causing cell damage
through lipid peroxidation and oxidative stress [9, 11,
13, 14]. Cytotoxicity and oxidative stress triggered by
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MWCNTs, as well as modest inflammatory responses,
were observed in human umbilical vein endothelial cells
[15]. Previous study suggested that the primary toxicity
of MWCNTs in red spinach was mainly derived from re-
active oxygen species (ROS) overproduction, and the
toxic effects could be reversed by the supplemented as-
corbic acid [7]. In this sense, MWCNTs is considered as
a new stressed factor to organisms, either in animals or
in plants.
Lateral root (LR) formation, an important determinant

of root architecture, has been considered as an indicator
of adaptive response to various stresses [16]. In higher
plants, the formation of LR is influenced by phytohor-
mones and a wide range of environmental cues, includ-
ing water availability, nutrients, and abiotic stress, such
as hypoxia and heavy metal stress [17–19]. Meanwhile,
ample evidence confirmed that the formation of LR not
only acts as a physical support, but also contributes to
water and nutrient uptake for plant growth and develop-
ment [19–21]. Different environmental clues could
trigger several specific stress-induced morphogenic re-
sponse (SIMR) phenotypes, including the promotion of
LR formation and an inhibition of root elongation [17]..
The regulation of LR formation is also tightly controlled
by phytohormones, such as auxin, and the activation of
cell cycle regulatory genes in response to auxin was sug-
gested [19, 22]. Meanwhile, the involvement of some
small molecules in auxin-triggered root organogenesis
was confirmed in cucumber, tomato, soybean, and rape-
seed plants [23–27]. These small molecules include
hydrogen peroxide (H2O2), nitric oxide (NO), carbon
monoxide (CO), and hydrogen gas (H2).
Among these, NO, a free radical gas, has been shown

to have multiple physiological functions in plants [28,
29]. Besides the enhancement of plant adaptation against
stresses, the functions of NO include the promotion of
root hair development, adventitious rooting, and lateral
root formation [30–33], although the enzymatic re-
source(s) of NO biosynthesis in those aforesaid pro-
cesses remains elusive. In animals, the synthesis of NO
from L-arginine is catalyzed by the heme-containing en-
zyme nitric oxide synthase (NOS) [34]. Although gene(s)
encoding NOS enzymes has not been identified in
plants, the mammalian NOS-like activity is detected
widely [35, 36], and the inhibitors of mammalian NOS,
such as NG-nitro-L-arginine methyl ester hydrochloride
(L-NAME), can inhibit NO generation in plants [25, 33,
36–39]. Importantly, ample genetic evidence revealed
that NO can be produced by nitrate reductase (NR), a
well-known enzyme responsible for nitrogen metabolism
in plants [28]. The involvement of NR-mediated NO
production in stomatal closure and cold acclimation has
been demonstrated genetically [37, 38]. Our previous
study showed that NR-dependent NO synthesis is
involved in auxin-induced hydrogen gas-mediated lateral
root formation [39].
Until now, different responses in LR formation,

promotion or inhibition, were respectively reported in
various plant species when supplemented with nanoma-
terials, including MWCNTs [40–43], gold nanoparticles
(Au NP, [44]), zinc oxide nanoparticles (ZnO NP [45,
46];), titanium dioxide nanoparticles (TiO2 NP [46];),
and graphene oxide (GO [47–49];) (Table 1), and no
study has yet provided definitive proof of a role of NO
in above responses. In this study, the detection of en-
dogenous NO by Greiss reagent method, laser scanning
confocal microscopy (LSCM), and electron paramagnetic
resonance (EPR) analyses revealed that the NO level was
increased in MWCNT-treated tomato seedlings. After-
wards, LR formation was observed. We further study the
involvement of NO in LR formation triggered by
MWCNTs, by manipulating endogenous NO levels
using NO scavenger and antagonists that inhibit NR and
mammalian-like NOS activity. Further experiment re-
vealed that NR-dependent NO might be, at least par-
tially, essential for LR formation in response to
MWCNTs. This work thus opens a new window for un-
derstanding the biological effects of nanomaterials in
plants.

Materials and Methods
Chemicals
Unless stated otherwise, all the other chemicals were ob-
tained from Sigma-Aldrich (St Louis, MO, USA).
MWCNTs, purchased from Sigma-Aldrich, was charac-
terized as previously described [50]. The outer diameter,
inter diameter, and the length of MWCNTs were 6–12
nm, 2.5–5 nm, and 1–9 μm, respectively. After sonic-
ation treatment, the obtained homogenate colloidal sus-
pension was sterilized and used.
Other carbon nanoparticles were obtained from Nan-

jing XFNANO Materials Tech Co., Ltd., including
single-walled carbon nanotubes (SWCNTs, XFS22; pur-
ity > 95%, diameter 1–2 nm, length 5–30 μm, special sur-
face area > 1075m2/g), graphene (XF001W; purity ~
99%, diameter 0.5–5 μm, thickness ~ 0.8 nm, single layer
ratio ~ 80%, BET surface area 500~1000 m2/g; electrical
resistivity ≦ 0.30Ω.cm), and active carbon (AC, XFP06;
purity > 95%, particle size 5 ± 1 μm, pore volume 1–1.2
cm3/g, aperture 2.0–2.2 nm, special surface area ~ 1500–
1700 m2/g).
Additionally, sodium nitroprusside (SNP) was used as

a NO-releasing compound [30–33]. 2-(4-Carboxyphe-
nyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide po-
tassium salt (cPTIO) was regarded as a scavenger of NO
[51–54]. Tungstate (Tg; an inhibitor of NR [28, 33, 37,
55–57];) and NG-nitro-L-arginine methyl ester hydro-
chloride (NAME; an inhibitor of mammalian NOS-like



Table 1 Different responses in LR formation triggered by nanomaterials

Materials OD (nm) ID
(nm)

Length
(μm)

Species Concentration Effect on LR
formation

Article(s)

MWCNTs 6–12 2.5–5 1–9 Solanum lycopersicum 5000 mg/L Promotion This
study

MWCNTs 20–70 5–10 > 2 Glycine max 1000 mg/L Inhibition [40]

MWCNTs 6–13 2–6 2.5–20 Lupinus elegans; Eysenhardtia
polystachya

10–50 μg/mL Promotion [41]

MWCNTs About
9.5

– < 1 Lactuca sativa 5–20 mg/L Promotion [42]

MWCNTs 30–40 – – Arabidopsis thaliana 50 mg/L Promotion [43]

Au NP 20–50 – – Gloriosa superba 500–1000 μM Promotion [44]

ZnO NP < 100 – < 1 Triticum aestivum 125–500mg/L Promotion [45]

ZnO NP < 50 – – Cicer arietinum 100–1000 ppm Inhibition [46]

TiO2 NP < 50 – – Cicer arietinum 100–1000 ppm Promotion [46]

GO 50–200 – – Oryza sativa; Malus domestica 0.01–1 mg/L, 5–50 mg/L, 0.1–10
mg/L

Promotion
Inhibition

[47–49]

Au NP, gold nanoparticles; ZnO NP, zinc oxide nanoparticles; TiO2 NP, titanium dioxide nanoparticles; GO, graphene oxide
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enzyme [25, 33, 36–39];) were also applied. In this study,
the concentrations of above chemicals were determined
in the pilot experiments, from which the significant re-
sponses were observed.

Plant Material and Growth Conditions and Determination
of LR Formation
Tomato (Solanum lycopersicum L.) seeds “Jiangshu 14”
were kindly supplied by Jiangsu Agricultural Institutes,
Nanjing, Jiangsu Province, China. Selected seeds of iden-
tical size were germinated in distilled water at 25 ± 1 °C
in the dark for 3 days. The selected identical seedlings
with radicles 2–3 mm were then transferred to 6 mL
treatment solutions containing the indicated concentra-
tions of MWCNTs, 200 nM 1-naphthylacetic acid (NAA;
a well-known auxin), 0.1 mM SNP, 0.2 mM cPTIO,
20 μM tungstate (Tg), 0.2 mM NAME, and other carbon
nanoparticles, including 5 mg/mL single-walled carbon
nanotubes (SWCNTs), graphene, and active carbon
(AC), alone or in combination for the indicated time
points. Seedlings were grown in an illuminating incuba-
tor (25 ± 1 °C) with a light intensity of 200 μmol m−2 s−1

at 14/10 h (light/dark) photoperiod.
After treatments, pictures were taken, and the number

and length of emerged lateral root (> 1 mm) per seedling
were then determined by using the Image J software
(http://rsb.info.nih.gov/ij/) [39, 58]. As described previ-
ously, only the lateral root-inducible segments were used
for the subsequent analysis.

Imaging of MWCNT Distribution by Transmission Electron
Microscopy
The distribution of MWCNTs in tomato seedling root
was characterized using the transmission electron
microscopy (TEM; JEOL, JEM-200CX, Tokyo, Japan).
Sample preparation for TEM analysis was according to
the previous protocol [59].

Imaging of Endogenous NO by Laser Scanning Confocal
Microscope
NO imaging was carried out by using a fairly specific
NO fluorescent probe 4-amino-5-methylamino-2′,7′-
difluorofluorescein diacetate (DAF-FM DA). After the
probe was thoroughly washed, the images were obtained
using the Zeiss LSM 710 confocal microscope (Carl
Zeiss, Oberkochen, Germany, excitation at 488 nm,
emission at 500–530 nm for NO analysis). In our experi-
ment, 20 individual samples were randomly selected and
measured per treatment. Photographs are representative
of identical results.

NO Content Determined by Griess Reagent Assay
According to the methods previously described [50], NO
content was determined with the Griess reagent assay.
Importantly, for escaping the interfering caused by the
concentrated nitrate and nitrite contents in plants, the
identical samples preincubated in 200 μM cPTIO (the
scavenger of NO) for 30 min were regarded as the blank
samples. After the addition of Griess reagent for 30 min,
absorbance was recorded at 540 nm, and NO content
was determined by comparison to a standard curve of
NaNO2.

Determination of NO with Electron Paramagnetic
Resonance (EPR)
According to our previous methods [39, 55, 60], the deter-
mination of NO level using electron paramagnetic reson-
ance (EPR) was carried out. The organic solvent layer was

http://rsb.info.nih.gov/ij/


Fig. 1 MWCNT-induced tomato LR formation was in an
approximately dose-dependent manner. Three-day-old tomato
seedlings were treated with 200 nM NAA and the indicated
concentrations of MWCNTs, respectively. The number and length of
emerged lateral root (> 1 mm) per seedling were then determined
after 3 days of treatment. There were 30 (10 × 3) plants in three
biological replicates, and the experiments were conducted for 3
times. Data are the means ± SE. Within each set of experiments, bars
denoted by the same letter did not differ significantly at p < 0.05
level according to Duncan’s multiple test
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used to determine NO on a Bruker A300 spectrometer
(Bruker Instrument, Karlsruhe, Germany) under the fol-
lowing conditions: room temperature; microwave fre-
quency, 9.85 GHz; microwave power, 63.49mW; and
modulation frequency, 100.00 kHz.

Determination of Nitrate Reductase (NR) Activity
The NR activity was detected spectrophotometrically at
540 nm according to the previous method [57]. The pro-
duced nitrite was determined spectrophotometrically at
540 nm by the addition of 1 mL of 1% (w/v) sulfenila-
mide in 3M HCl together with 1 mL of 0.02% (v/v) N-
(1-naphthyl)-ethylenediamine.

Statistical Analysis
Where indicated, results were expressed as the mean
values ± SE of three independent experiments with three
biological replicates for each. Statistical analysis was per-
formed using the SPSS Statistics 17.0 software. For stat-
istical analysis, Duncan’s multiple test (p < 0.05) was
chosen as appropriate.

Results
MWCNTs not only Entry into Root Cells, but also Promote
LR Formation
LR formation is a major determinant of root systems
architecture. To investigate the effect of MWCNTs on
LR formation, 3-day-old tomato seedlings were incu-
bated with a range of concentrations of MWCNTs (0.05,
0.5, 5, and 50 mg/mL) for 3 days. The application of 1-
naphthylacetic acid (NAA) was regarded as a positive
control. In our experiment, both LR number and length
were determined as two parameters of LR formation. As
shown in Fig. 1, compared to the control samples, ex-
ogenous MWCNTs significantly induced LR formation
in an approximately dose-dependent manner, with a
maximal effect in 5 and 50mg/mL. Similar inducible re-
sponse was observed when 200 nM NAA was adminis-
trated. Considering the cost of MWCNTs and inducible
response in LR formation, 5 mg/mL MWCNTs was ap-
plied in the following experiments.
To validate the specific function of MWCNTs in the

induction of LR formation, we further investigate
whether the other allotropies of MWCNTs also have
such inducible effects. As shown in Fig. 2a, all these car-
bon nanomaterials exhibited toxic effects on shoot
growth (data not shown). Interestingly, the application
of MWCNTs, single-walled carbon nanotubes
(SWCNTs), graphene, and active carbon with identical
concentration (5 mg/mL) could differentially result in
the increases in LR number and length, compared to the
chemical-free control plants (Fig. 2b). Among these che-
micals, the maximal inducible response was discovered
in MWCNT-incubated tomato seedlings.
By the aid of transmission electron microscopy (TEM),
the distribution of MWCNTs can be evaluated easily.
The results shown in Fig. 3 revealed that MWCNTs,
when exogenously applied, could be absorbed by tomato
seedlings, and the distribution of MWCNTs was found
to be in root cells. This result can be understood, since
seedling roots are directly cultured in liquid solution
containing MWCNTs.

MWCNT-Induced NO Synthesis and Thereafter LR
Formation Were Sensitive to cPTIO, a Scavenger of NO
To investigate whether NO is also involved in
MWCNT-induced LR formation, the function of NO in
LR formation elicited by MWCNTs was assessed by ma-
nipulating endogenous NO levels using NO-releasing
compound and the scavenger. Similar to the previous re-
sults [31], the administration of sodium nitroprusside
(SNP) could result in the induction of LR formation, and
an additive response was observed when SNP and
MWCNTs were applied together (Fig. 4). When 2-(4-
carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-
oxide potassium salt (cPTIO; a scavenger of NO) was
added, the promotion responses in LR formation caused
by MWCNTs were significantly impaired. Alone, cPTIO
could inhibit LR development, compared to the
chemical-free control, indicating the important role of
endogenous NO in root organogenesis.
In order to further evaluate the important role of en-

dogenous NO in MWCNT response, a time course of
NO production in vivo was firstly detected with Greiss



Fig. 2 Changes in lateral root formation in response to different
carbon nanoparticles. Three-day-old tomato seedlings were treated
with distilled water (Con), 5 mg/mL MWCNT, single-walled carbon
nanotubes (SWCNTs), graphene, and active carbon (AC), respectively,
for another 3 days. a Representative photos were then taken. b The
number and length of emerged lateral root (> 1 mm) per seedling
were then determined as well. Scale bar = 50mm. There were 30
(10 × 3) plants in three biological replicates, and the experiments
were conducted for 3 times. Data are the means ± SE. Within each
set of experiments, bars denoted by the same letter did not differ
significantly at p < 0.05 level according to Duncan’s multiple test

Fig. 3 Distribution of MWCNTs in tomato roots. TEM images of 3-
day-old tomato seedlings treated with distilled water (Con; a) or 5
mg/mL MWCNTs (b) for 1 day were taken. Red arrow indicates cell
wall, while white arrow indicates MWCNTs

Fig. 4 MWCNT-induced LR formation was sensitive to the removal
of endogenous NO with cPTIO, its scavenger. Three-day-old tomato
seedlings were treated with distilled water, 5 mg/mL MWCNT, 0.1
mM SNP, 0.2 mM cPTIO, alone or in combination for 3 days.
Afterwards, the number and length of emerged lateral root (> 1
mm) per seedling were then determined. There were 30 (10 × 3)
plants in three biological replicates, and the experiments were
conducted for 3 times. Data are the means ± SE. Within each set of
experiments, bars denoted by the same letter did not differ
significantly at p < 0.05 level according to Duncan’s multiple test
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reagent method. During above determination, the identi-
cal filtrate pretreated with cPTIO was regarded as a
blank for the accurate results. It was observed that NO
production in tomato seedling roots was increased dra-
matically till 24 h after MWCNT treatment and then re-
covers to the initial levels (48 h; Fig. 5a). Above maximal
level of endogenous NO triggered by MWCNTs for 24 h
was obviously abolished by cPTIO, a scavenger of NO,
suggesting the specific role of NO.
To confirm above results, both LSCM and ESR were

adopted. Firstly, the changes in endogenous NO levels in
seedling roots of tomato were monitored by labeling NO



Fig. 5 MWCNT-induced NO production was blocked by cPTIO, the scavenger of NO. Three-day-old tomato seedlings were treated with distilled
water and 5 mg/mL MWCNTs with or without 0.2 mM cPTIO, respectively. a Changes in NR activity (left), and NO production (right) determined
using Greiss reagent method. b After treamtent for 24 h, the NO signal was analyzed by LSCM (left) and EPR (right). Scale bar = 0.1 mm. Data are
the means ± SE. Bars denoted by the same letter did not differ significantly at p < 0.05 level according to Ducan’s multiple test
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using the cell-permeable, fairly NO-specific fluorescent
probe DAF-FM DA and imaging with LSCM. Similar to
the previous results (Fig. 5a), in the presence of cPTIO, the
increased DAF-FM-dependent fluorescence intensity trig-
gered by MWCNTs was greatly abolished (Fig. 5b). These
results implied that the DAF-FM-triggered fluorescence is
related to endogenous NO levels in tomato seedling roots.
MWCNT-induced NO production was confirmed by

EPR spectroscopy. As expected, seedling roots treated
for 24 h with MWCNTs presented the typical hyperfine
structure triplet of the NO complex. However, the
addition of cPTIO abolished above signal, indicating that
MWCNT exposure did result in a strong NO production
(Fig. 5b). Collectively, these data suggested that NO syn-
thesis might be required for MWCNT-triggered LR for-
mation in tomato seedlings.

NR Might Be Responsible for MWCNT-Induced NO
Production and Thereafter LR Formation
Since NR and mammalian-like NOS are two major en-
zymes related to NO synthesis in plants, both tungstate (a
NR inhibitor) and NAME (a mammalian NOS inhibitor)
were applied in the subsequent experiment. Here, tung-
state treatment substantially suppressed the promotion of
LR formation in MWCNT-treated tomato seedling roots
(Fig. 6). Comparatively, the induction of LR formation
triggered by MWCNTs was not strongly inhibited by the
addition of NAME, indicating that mammalian-like NOS
might be not the target NO synthetic enzyme responsible
for NO production elicited by MWCNTs. It was also ob-
served that a slight but no significant decrease in LR for-
mation was observed in tomato seedlings when either
tungstate or NAME was separately applied.
The role of NR in MWCNT-triggered LR formation was

further examined by monitoring NO production in re-
sponse to applied MWCNTs with or without tungstate.
Compared to the changes in endogenous NO production
(Fig. 5a), time-course analysis in NR activity showed the
similar tendency (Fig. 7a), also peaking at 24 h after treat-
ment with MWCNTs. These results suggested that
MWCNT-induced increase in NO production may mainly
result from enhanced activity of NR. Consistently, the



Fig. 6 Changes in LR formation in response to MWCNTs and two
inhibitor of NO synthesis. Three-day-old tomato seedlings were
treated with 5 mg/mL MWCNT, 20 μM tungstate (Tg), 0.2 mM NAME,
alone or in combination for 3 days. Afterwards, the number and
length of emerged lateral root (> 1 mm) per seedling were then
determined. There were 30 (10 × 3) plants in three biological
replicates, and the experiments were conducted for 3 times. Data
are the means ± SE. Within each set of experiments, bars denoted by
the same letter did not differ significantly at p < 0.05 level according
to Duncan’s multiple test

Fig. 7 MWCNT-induced NO production was blocked by tungstate,
an inhibitor of NR. Three-day-old tomato seedlings were treated
with distilled water and 5mg/mL MWCNTs with or without 20 μM
tungstate (Tg). Changes in NR activity (a) and NO production (b)
determined using Greiss reagent method. Data are the means ± SE.
Bars denoted by the same letter did not differ significantly at p <
0.05 level according to Ducan’s multiple test
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inhibition of NR-dependent NO production by tungstate
was confirmed by using Greiss reagent method (Fig. 7b),
LSCM, and EPR (Additional file 1: Figure S1).

Discussion
Phytotoxicity is a significant consideration in under-
standing the potential environmental impact of nanopar-
ticles [4, 7, 61–63]. Abundant evidence revealed that
MWCNTs are toxic to plants, including inducing oxida-
tive damage, inhibiting seed germination, root growth,
and development [11, 63, 64]. However, being as a
phenotype of SIMR, root branching through lateral root
formation is an important component of the adaptability
of the root system to various environmental cues [17]. In
this work, we integrated biological, pharmacological, and
biochemical analysis to show the involvement of NR-
mediated NO production in MWCNT-induced LR for-
mation, at least partially in our experimental conditions.
Also, the function of NO in root organogenesis stimu-
lated by MWCNTs emphasized the central roles of this
second messenger involved in plant developmental
process and adaption against stress [29–33, 37, 38].
First, we confirmed that 5 mg/mL MWCNTs (OD 6–

12 nm) could enter into root tissues (Fig. 3). Afterwards,
the induction of tomato LR formation was observed
(Fig. 1), mimicking the induction roles of NAA and SNP
(Fig. 4), a well-known NO-releasing compound [30, 31].
Similar inducing responses were discovered in resinous
trees [41], lettuce [42], and Arabidopsis [43] when chal-
lenged with MWCNTs (OD 6–13 nm, about 9.5 nm, and
30–40 nm, respectively). For example, the application
with either pristine MWCNT (p-MWCNT) or carboxyl-
functionalized MWCNT (c-MWCNT) (average diameter
9.5 nm) could promote the development of LR in lettuce
seedlings [42]. By contrast, the inhibition of primary root
and even LR formation were simultaneously found in
soybean plants when subjected to MWCNTs (OD 20–
70 nm [40];). By comparing with the data in outer diam-
eter of MWCNTs (Table 1), we supposed that
MWCNT-exhibited effects on LR formation varied with
their diameters, showing the promotion with lower
diameter and the inhibition with higher diameter. Cer-
tainly, related mechanism should be carefully investi-
gated. Similar phenomenon was confirmed in plant
salinity tolerance [50]. Combined with above results, it



Fig. 8 Schematic representation of the proposed MWCNT-induced
tomato lateral root formation mainly via NR-dependent NO
production. The role of mammalian NOS-like enzyme was
preliminarily ruled out
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was further deduced that the function of nanomaterials
may vary from species, and vice versa, different types of
nanomaterials may cause various biological effects. How-
ever, other influencing factors, such as different doses of
MWCNTs [48] and even plant growth conditions, could
be not easily ruled out.
Compared with other nanomaterials, including

SWCNT, graphene, and AC with an identical concentra-
tion, the maximal induction in LR formation and even
toxic effects on shoot growth were observed in MWCNTs
(Fig. 2). These might be related to the special physical
characteristics of MWCNTs, one type of nanomaterials
that have high electrical conductivity, large specific surface
area, high aspect ratio, and remarkable thermal stability
[65]. The toxic effects of nanomaterials have been widely
reported in cucumber, cabbage, carrot, onion etc. [66, 67].
Ample evidence showed that NO, acting as a signaling

molecule, can regulate a wide range of plant processes
from environmental adaptation to development and the
latter of which includes seed germination and root or-
ganogenesis [29, 68–73]. Our subsequent experiment re-
vealed that NO may be involved in MWCNT-induced
LR formation. Although several methods for imaging
NO production in plant cells have been applied, the dis-
advantages, including the lack of sensitivity and the
interference by NO-independent molecules, may exist in
each method [74]. Thus, three methods responsible for
NO imaging and determination, including Greiss reagent
method, LSCM, and EPR, together with the application
of cPTIO, a scavenger of NO, were applied in our ex-
perimental conditions. By using three methods, we ob-
served that an increased endogenous NO production
induced by MWCNTs in tomato seedlings was abolished
by cPTIO (Fig. 5), a scavenger of NO [30–32]. Import-
antly, this process was correlated to the biological re-
sponse of MWCNT-induced LR development, which
was severely blocked when cPTIO was applied simultan-
eously (Fig. 4).
Further evaluation of these responses and the potential

source(s) of NO induced by exogenously applied
MWCNTs revealed that NO production and thereafter
LR formation could be attributed to NR activity. In
plants, NO production mainly generates from NR and
mammalian NOS-like protein [28]. However, plant NOS
gene is still not identified [35, 75, 76], although some ex-
periments using the inhibitors of the mammalian NOS
enzyme provided some evidence of L-arginine-dependent
pathway in NO production [36, 76]. NR is confirmed to
be the most important sources of NO in plants [28]. Pre-
vious studies showed that NR-dependent NO production
functions as a nitrate-related signal involved in the
regulation of root architecture [32, 33]. Besides, NR-
dependent NO production was closely associated with in
cold acclimation [38], salinity tolerance [50], and abscisic
acid-induced stomatal closure [77]. Our results further
revealed that tungstate (an inhibitor of NR) obviously
impaired MWCNT-induced LR formation, especially in
LR length (Fig. 6). By contrast, there was only a slight
decrease in LR length, and no significant difference ob-
served in LR number when L-NAME (an inhibitor of
mammalian NOS) was used. Consistently, biochemical
assay showed that NR activity was increased obviously
by MWCNTs (Fig. 7a), paralleled to the changes in NO
production (Fig. 5a). Above responses could be totally
blocked by tungstate (Fig. 7a, Additional file 1: Figure
S1). We thus deduced that the increased endogenous
NO production induced by MWCNTs was mainly attri-
bute to NR pathway. Certainly, further genetic evidence
should be investigated.

Conclusion
In summary, we provide evidence to show that
MWCNT-induced NO production via NR might be re-
quired for tomato lateral root formation and this was
summarized in Fig. 8. Importantly, above findings pro-
vide insights into the intricate molecular mechanism of
MWCNTs functions in plants.
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Additional file 1: Figure S1. Tg inhibits MWCNTs-induced NO accumulation.
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by LSCM (A) and EPR (B) after treated for 24 h. Scale bar = 0.1mm.
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